Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7145, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932294

RESUMO

The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.


Assuntos
Cisteína , Células Ciliadas Auditivas Externas , Animais , Células Ciliadas Auditivas Externas/metabolismo , Cisteína/metabolismo , Ânions/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Mamíferos/metabolismo
2.
Nat Commun ; 14(1): 5395, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669933

RESUMO

The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.


Assuntos
Bicarbonatos , Dióxido de Carbono , Humanos , Masculino , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Concentração de Íons de Hidrogênio
3.
Sci Rep ; 10(1): 21293, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277511

RESUMO

The voltage-gated proton channel Hv1 is expressed in a variety of cells, including macrophages, sperm, and lung epithelial cells. Hv1 is gated by both the membrane potential and the difference between the intra- and extracellular pH (ΔpH). The coupling of voltage- and ∆pH-sensing is such that Hv1 opens only when the electrochemical proton gradient is outwardly directed. However, the molecular mechanism of this coupling is not known. Here, we investigate the coupling between voltage- and ΔpH-sensing of Ciona intestinalis proton channel (ciHv1) using patch-clamp fluorometry (PCF) and proton uncaging. We show that changes in ΔpH can induce conformational changes of the S4 voltage sensor. Our results are consistent with the idea that S4 can detect both voltage and ΔpH.

4.
Proc Natl Acad Sci U S A ; 117(24): 13783-13791, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467169

RESUMO

Proton (H+) channels are special: They select protons against other ions that are up to a millionfold more abundant. Only a few proton channels have been identified so far. Here, we identify a family of voltage-gated "pacemaker" channels, HCNL1, that are exquisitely selective for protons. HCNL1 activates during hyperpolarization and conducts protons into the cytosol. Surprisingly, protons permeate through the channel's voltage-sensing domain, whereas the pore domain is nonfunctional. Key to proton permeation is a methionine residue that interrupts the series of regularly spaced arginine residues in the S4 voltage sensor. HCNL1 forms a tetramer and thus contains four proton pores. Unlike classic HCN channels, HCNL1 is not gated by cyclic nucleotides. The channel is present in zebrafish sperm and carries a proton inward current that acidifies the cytosol. Our results suggest that protons rather than cyclic nucleotides serve as cellular messengers in zebrafish sperm. Through small modifications in two key functional domains, HCNL1 evolutionarily adapted to a low-Na+ freshwater environment to conserve sperm's ability to depolarize.


Assuntos
Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Masculino , Família Multigênica , Prótons , Espermatozoides/metabolismo , Peixe-Zebra/genética
5.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535971

RESUMO

Sensory systems sequentially extract increasingly complex features. ON and OFF pathways, for example, encode increases or decreases of a stimulus from a common input. This ON/OFF pathway split is thought to occur at individual synaptic connections through a sign-inverting synapse in one of the pathways. Here, we show that ON selectivity is a multisynaptic process in the Drosophila visual system. A pharmacogenetics approach demonstrates that both glutamatergic inhibition through GluClα and GABAergic inhibition through Rdl mediate ON responses. Although neurons postsynaptic to the glutamatergic ON pathway input L1 lose all responses in GluClα mutants, they are resistant to a cell-type-specific loss of GluClα. This shows that ON selectivity is distributed across multiple synapses, and raises the possibility that cell-type-specific manipulations might reveal similar strategies in other sensory systems. Thus, sensory coding is more distributed than predicted by simple circuit motifs, allowing for robust neural processing.


Assuntos
Drosophila/fisiologia , Interneurônios/fisiologia , Vias Visuais/fisiologia , Percepção Visual , Animais , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , GABAérgicos/metabolismo , Modelos Neurológicos
6.
J Biol Chem ; 294(11): 3853-3871, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30662006

RESUMO

The nonlysosomal glucosylceramidase ß2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren-like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein-protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.


Assuntos
Ataxia Cerebelar/metabolismo , Locomoção/genética , Mutação com Perda de Função , Paraplegia Espástica Hereditária/metabolismo , beta-Glucosidase/metabolismo , Animais , Biocatálise , Ataxia Cerebelar/genética , Glucosilceramidase , Humanos , Camundongos , Camundongos Knockout , Paraplegia Espástica Hereditária/genética , Especificidade da Espécie , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/deficiência , beta-Glucosidase/genética
7.
Br J Pharmacol ; 175(15): 3144-3161, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29723408

RESUMO

BACKGROUND AND PURPOSE: Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH: We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS: RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS: We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Pregnatrienos/farmacologia , Espermatozoides/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ouriços-do-Mar , Espermatozoides/fisiologia
8.
ACS Chem Biol ; 12(12): 2952-2957, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29024582

RESUMO

The voltage-gated proton channel Hv1 is expressed in various human cell types, including macrophages, epithelial cells, and sperm. Hv1 opening leads to proton efflux that alkalizes the cytosol. Here, we describe light-activated Hv1 inhibitors (photoswitches) that allow controlling its activity with high spatiotemporal precision. The photoswitches comprise a light-sensitive azobenzene moiety and 2-guanidinobenzimidazole (2GBI), a known Hv1 inhibitor. In the dark, photoGBI inhibits heterologously expressed Hv1 channels. Blue light, which isomerizes the azobenzene group from trans to cis conformation, releases inhibition. We demonstrate photocontrol of native proton currents in human macrophages and sperm using photoGBI, underlining their use as valuable optochemical tools to study the function of Hv1 channels.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Canais Iônicos/metabolismo , Animais , Humanos , Canais Iônicos/química , Luz , Oócitos/metabolismo , Análise Espectral , Xenopus/metabolismo
9.
J Physiol ; 595(5): 1533-1546, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859356

RESUMO

KEY POINTS: In human sperm, proton flux across the membrane is controlled by the voltage-gated proton channel Hv1. We show that sperm harbour both Hv1 and an N-terminally cleaved isoform termed Hv1Sper. The pH-control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm. ABSTRACT: In human sperm, the voltage-gated proton channel Hv1 controls the flux of protons across the flagellar membrane. Here, we show that sperm harbour Hv1 and a shorter isoform, termed Hv1Sper. Hv1Sper is generated from Hv1 by removal of 68 amino acids from the N-terminus by post-translational proteolytic cleavage. The pH-dependent gating of the channel isoforms is distinctly different. In both Hv1 and Hv1Sper, the conductance-voltage relationship is determined by the pH difference across the membrane (∆pH). However, simultaneous changes in intracellular and extracellular pH that leave ΔpH constant strongly shift the activation curve of Hv1Sper but not that of Hv1, demonstrating that cleavage of the N-terminus tunes pH sensing in Hv1. Moreover, we show that Hv1 and Hv1Sper assemble as heterodimers that combine features of both constituents. We suggest that cleavage and heterodimerization of Hv1 represents an adaptation to the specific requirements of pH control in sperm.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Espermatozoides/fisiologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Oócitos/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Mucosa Respiratória , Serina Proteases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Sulfonas/farmacologia , Xenopus laevis
10.
Elife ; 42015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26650356

RESUMO

Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The "spinning" mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.


Assuntos
Sinalização do Cálcio , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Potássio/metabolismo , Espermatozoides/fisiologia , Peixe-Zebra/fisiologia , Animais , Masculino , Espermatozoides/efeitos dos fármacos
11.
Cell ; 163(2): 456-92, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451489

RESUMO

We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP: VIDEO ABSTRACT.


Assuntos
Simulação por Computador , Modelos Neurológicos , Neocórtex/citologia , Neurônios/classificação , Neurônios/citologia , Córtex Somatossensorial/citologia , Algoritmos , Animais , Membro Posterior/inervação , Masculino , Neocórtex/fisiologia , Rede Nervosa , Neurônios/fisiologia , Ratos , Ratos Wistar , Córtex Somatossensorial/fisiologia
12.
Nat Struct Mol Biol ; 22(4): 283-290, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730777

RESUMO

The Hv1 proton channel is unique among voltage-gated channels for containing the pore and gate within its voltage-sensing domain. Pore opening has been proposed to include assembly of the selectivity filter between an arginine (R3) of segment S4 and an aspartate (D1) of segment S1. We determined whether gating involves motion of S1, using Ciona intestinalis Hv1. We found that channel opening is concomitant with solution access to the pore-lining face of S1, from the cytoplasm to deep inside the pore. Voltage- and patch-clamp fluorometry showed that this involves a motion of S1 relative to its surroundings. S1 motion and the S4 motion that precedes it are each influenced by residues on the other helix, thus suggesting a dynamic interaction between S1 and S4. Our findings suggest that the S1 of Hv1 has specialized to function as part of the channel's gate.


Assuntos
Ciona intestinalis , Ativação do Canal Iônico , Canais Iônicos/química , Modelos Moleculares , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Prótons , Alinhamento de Sequência
13.
Methods Mol Biol ; 1266: 93-106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560069

RESUMO

Understanding the function of ion channels is a major goal of molecular neurophysiology. While standard electrophysiological methods are invaluable tools to investigate the gating of ion channels, the structural rearrangements that mediate the way a channel senses physiological signals and opens and closes its gates cannot be measured electrically in a direct way. Here, we describe a method, based on site-specific labeling of a channel of interest with an environmentally sensitive fluorophore, which makes it possible to monitor conformational changes of ion channels in biological membranes in real time.


Assuntos
Corantes Fluorescentes/química , Canais Iônicos/fisiologia , Rodaminas/química , Animais , Células Cultivadas , Fluorometria , Técnicas de Patch-Clamp , Transporte Proteico , Coloração e Rotulagem , Xenopus laevis
14.
PLoS One ; 8(3): e57054, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469183

RESUMO

D1 and D2 receptor expressing striatal medium spiny neurons (MSNs) are ascribed to striatonigral ("direct") and striatopallidal ("indirect") pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA), however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.


Assuntos
Membrana Celular/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/metabolismo , Sinapses/fisiologia , Animais , Benzazepinas/farmacologia , Membrana Celular/efeitos dos fármacos , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Fluorescência Verde , Masculino , Camundongos , Microtomia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Sinapses/efeitos dos fármacos
15.
Neuron ; 72(6): 991-1000, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22196334

RESUMO

In classical tetrameric voltage-gated ion channels four voltage-sensing domains (VSDs), one from each subunit, control one ion permeation pathway formed by four pore domains. The human Hv1 proton channel has a different architecture, containing a VSD, but lacking a pore domain. Since its location is not known, we searched for the Hv permeation pathway. We find that mutation of the S4 segment's third arginine R211 (R3) compromises proton selectivity, enabling conduction of a metal cation and even of the large organic cation guanidinium, reminiscent of Shaker's omega pore. In the open state, R3 appears to interact with an aspartate (D112) that is situated in the middle of S1 and is unique to Hv channels. The double mutation of both residues further compromises cation selectivity. We propose that membrane depolarization reversibly positions R3 next to D112 in the transmembrane VSD to form the ion selectivity filter in the channel's open conformation.


Assuntos
Canais Iônicos/química , Sequência de Aminoácidos , Animais , Feminino , Humanos , Canais Iônicos/genética , Dados de Sequência Molecular , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.8 , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Prótons , Canais de Sódio/química , Canais de Sódio/genética , Xenopus laevis
16.
PLoS Comput Biol ; 7(8): e1002133, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876663

RESUMO

The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose.


Assuntos
Biologia Computacional/métodos , Eletrofisiologia/métodos , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Condutividade Elétrica , Interneurônios/fisiologia , Camundongos , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Ratos Wistar
17.
Proc Natl Acad Sci U S A ; 108(13): 5419-24, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21383177

RESUMO

Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 µm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs.


Assuntos
Córtex Cerebral/citologia , Rede Nervosa/anatomia & histologia , Células Piramidais/citologia , Sinapses/ultraestrutura , Animais , Modelos Neurológicos , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Sinapses/fisiologia
18.
PLoS Biol ; 8(9)2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20838653

RESUMO

Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.


Assuntos
Potenciais de Ação , Neocórtex/citologia , Células Piramidais/fisiologia , Animais , Sinapses/fisiologia
19.
J Physiol ; 587(Pt 22): 5411-25, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19770187

RESUMO

The general structure of the mammalian neocortex is remarkably similar across different cortical areas. Despite certain cytoarchitectural specializations and deviations from the general blueprint, the principal organization of the neocortex is relatively uniform. It is not known, however, to what extent stereotypic synaptic pathways resemble each other between cortical areas, and how far they might reflect possible functional uniformity or specialization. Here, we show that frequency-dependent disynaptic inhibition (FDDI) is a generic circuit motif that is present in all neocortical areas we investigated (primary somatosensory, auditory and motor cortex, secondary visual cortex and medial prefrontal cortex of the developing rat). We did find, however, area-specific differences in occurrence and kinetics of FDDI and the short-term dynamics of monosynaptic connections between pyramidal cells (PCs). Connectivity between PCs, both monosynaptic and via FDDI, is higher in primary cortices. The long-term effectiveness of FDDI is likely to be limited by an activity-dependent attenuation of the PC-interneuron synaptic transmission. Our results suggest that the basic construction of neocortical synaptic pathways follows principles that are independent of modality or hierarchical order within the neocortex.


Assuntos
Neocórtex/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/crescimento & desenvolvimento , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar
20.
Biol Cybern ; 99(4-5): 361-70, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19011924

RESUMO

The dynamic I-V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current-voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models-of the refractory exponential integrate-and-fire type-provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...